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 Despite the practical significance of studying the case of the tethered sphere in a steady
 flow ,  there are almost no laboratory investigations for such a problem ,  and it was
 previously unknown whether such a system would tend to oscillate or not .  It is also
 common ocean engineering practice to assume no oscillation ef fects in predictions of drag
 and tether angle of a tethered body .  The present work demonstrates that a tethered sphere
 will oscillate remarkably vigorously at a saturation amplitude of close to two diameters
 peak-to-peak .  The oscillations induce an increase in drag and tether angle of the order of
 around 100% over what is predicted using nonoscillating drag measurements .  Analysis of
 in-line and transverse natural frequencies indicate that these frequencies should have the
 same value .  Our experiments show that the in-line oscillations become phase locked with
 the transverse oscillations and vibrate at  twice  the frequency of the transverse motion .  The
 above results suggest that oscillations are highly significant to predictions of sphere
 response in a steady flow ,  and should not be neglected .  Finally ,  although response
 amplitudes show large disparity when plotted against Reynolds number ,  under a range of
 dif ferent sphere mass ratios ( M *) and tether length ratios ( L *) ,  we find an excellent
 collapse of data for the dif ferent experiments by plotting the amplitudes versus the reduced
 velocity  V R  5  U  / f n D .  This result shows that ,  for very small structural damping ,  the
 response amplitude may be considered as a function of the (normalized) natural frequency ,
 and is only a function of the mass ratio and length ratio in so much as these parameters
 influence the natural frequency itself .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 P ERHAPS ONE OF THE MOST BASIC  of fluid – structure interactions that one can imagine is a
 tethered sphere (or bluf f body) in a fluid flow .  By a wide variation of the mass ratio of
 the sphere ,  one can consider the case of an underwater tethered buoyant body ,  or a
 heavy sphere ‘‘pendulum’’ in air flow ,  as examples of essentially the same general
 problem .  Typical predictions ,  employed by practising ocean engineers ,  of tether angle
 θ   and mean drag coef ficient  C D   (see Figure 1) for a tethered buoyant sphere in a
 current ,  involve using the well-established sphere drag data in the literature [for
 example ,  Wieselsberger (1922) to be found in Schlichting (1979)] .  It is highly surprising
 that ,  despite the fact that tethered bodies are quite ubiquitous in engineering ,  no
 investigations have shown precisely whether a tethered sphere will oscillate in a steady
 fluid flow or current .  In the present work ,  we demonstrate that such a structure will
 indeed vibrate vigorously ,  and these oscillations have a direct impact on the tether
 angle and drag coef ficient .  Gross errors in predictions of mean response of tethered
 structure will ensue unless one takes account of their tendency to vibrate .

 Previous studies in the literature concerning a tethered sphere in a fluid flow appear
 to be concerned primarily with the action of surface waves on tethered buoyant
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 Figure 1 .  Idealized sketch of a tethered sphere in fluid flow .  The tethered sphere is inclined at an angle
 ( θ  ) ,  relative to the vertical ,  due to the drag force on the sphere .

 structures (Harleman & Shapiro 1961 ;  Shi-Igai & Kono 1969 ;  Ogihara 1980 ;  Vetha-
 mony  et al .  1992 ;  Carpenter  et al .  1995) .  As in the case of the prediction of
 flow-induced vibrations for a cylinder in waves ,  most of these investigations employ
 empirically determined drag and inertia coef ficients of the type used originally for fixed
 structures in ‘‘Morison’s’’ equation .  As may be expected ,  the combination of wave
 motions and dynamics of the tethered bodies yield highly complicated equations of
 motion ,  from which it is rather dif ficult to understand any of the underlying physics .  It
 is also clear that a tethered body will indeed vibrate in such a wave field ,  simply
 because of the harmonic oscillations of the fluid velocity past the structure .  Mention
 must also be made of the work of Mei (1994) on an oscillating sphere at low Reynolds
 number ,  Howe (1995) on forces on a sphere at low Reynolds number ,  Otto (1992) on
 an oscillating sphere in still water and Tsuji  et al .  (1991) on the forces on a sphere in a
 pulsed flow ,  although they are not directly relevant to the present work .  In the present ,
 conceptually simple ,  case of a tethered sphere in a current ,  we have found no published
 work whatsoever which investigates the propensity of the tethered structure to vibrate .
 It is to this problem that we address ourselves in this study .  Of significance are the
 frequencies of the fluid-induced vibrations ,  and their relation to the natural system
 frequency ,  and to the vortex formation frequency in the wake of a sphere .  We are
 particularly interested in a study of the wake vortical motions giving rise to any such
 vibrations .  In the present work ,  we shall show a remarkable propensity for the sphere
 to vibrate ,  and will demonstrate the significant ef fect of these oscillations on the drag
 and tether angle ,  which is clearly of practical significance in itself .  However ,  our
 presented results constitute the first phase of our investigations ,  and the vortex
 dynamics and a study of the frequency of oscillations will be included elsewhere .  It
 appears that the large scatter in previous measurements of Strouhal frequency for a
 fixed sphere (shown in Figure 7) leads to dif ficulties in precise conclusions about the
 synchronization of the sphere motion ,  and further careful Strouhal frequency measure-
 ments are required .

 2 .  EXPERIMENTAL METHOD

 Our experiments have been performed in the Cornell-ONR Water Channel ,  which has
 a cross-section of 15 in .  by 20 in .,  and a maximum speed of 35  cm / s .  The turbulence
 level is 0 ? 9% and flow uniformity is better than 1 ? 5% over 80% of the channel width .
 To achieve an accurate determination of fluid velocity through the channel ,  we have
 utilized a DISA Laser Doppler anemometer in the forward scattering mode .  The
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 spheres are of diameter 3 ? 92  cm and 3 ? 77  cm ,  and weigh 23 and 2 ? 3  g respectively .  We
 chose these parameters in order to yield a wide variation in the sphere mass ,  which is
 characterized in terms of a mass ratio ,   M * ,  where

 M *  5
 sphere  mass

 displaced  mass  of  fluid
 5

 M
 1 – 6 π D 3 r

 .  (1)

 The ‘‘high-mass’’ sphere corresponds with  M *  5  0 ? 73 ,  while the ‘‘low-mass’’ sphere has
 M *  5  0 ? 082 .  The spheres are tethered ,  using thin line (gut) ,  to the floor of the water
 channel .  The tether length of the spheres was such as to keep the bodies always
 submerged .

 One can imagine that determining the position of the sphere as a function of time
 must be achieved nonintrusively ,  since any extra lines attached to the sphere would
 undoubtedly af fect the dynamic response .  Our technique to find  X  ( t ) and  Y ( t ) ,  which
 are the in-line and transverse sphere displacements ,  involves image processing every
 single video image taken of the sphere motion ,  over a large number of cycles .  This is
 very time-intensive ,  although it is  essential  to yield the time variation and spectra of the
 x  and  y  oscillations .  The sphere oscillations are recorded by a S-VHS Video recorder ,
 through a CCD camera placed vertically under the test section ,  as shown schematically
 in Figure 2(a) .  The sphere displacements are analysed with image-processing hardware
 installed on a 486-computer .  The computer is programmed to control the VCR ,  in a
 fully automatic process ,  utilizing accurate time position of each frame ,  incorporating
 the time code written on the audio track of the tape .  The position of the sphere in each
 frame is determined using a simple geometric approach ,  where the outline of the edge
 of the dark sphere against a lighter background (for the camera viewing upwards) is
 found ,  and thereby the centre of the sphere is deduced ,  as indicated in the example
 picture of the video screen in Figure 2(b) .  With a video framing rate of 30  Hz ,  and a
 typical sphere oscillation of around 0 ? 5 – 2 ? 5  Hz ,  we find suf ficient resolution by
 analysing every video frame .  The tether angle is calculated by determining the mean
 streamwise displacement of the sphere from the undisturbed position ,  taking into
 account the ef fects of parallax .

 3 .  LARGE VIBRATIONS AND FLUID LOADING OF A TETHERED
 SPHERE

 Initially ,  we simply set up the very light sphere of low mass ratio ,  ( M *  5  0 ? 082)
 tethered to the floor of our water channel ,  and we immediately observed wild
 oscillations of the tethered sphere at almost all the flow speeds investigated .  This gave
 us an early indication that fluid-induced oscillations ,  which are generally ignored in
 engineering predictions for this problem ,  would be significant .

 Predictions of the natural frequencies in the  X  and  Y -directions can be made as
 follows .  Taking account of drag force ,  buoyancy ,  weight and tether tension ,  both the
 in-line and transverse frequencies are given by the same equation ,

 f n  5
 1

 2 π  – T

 M
 .  (2)

 The normalized natural frequency may be written in terms of a ‘‘Strouhal’’ number ,   S n  ,

 S n  5
 f n D

 U
 5 S 4 3

 4 π  D –  C T

 ( M *  1  C a ) L *
 ,  (3)
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 Figure 2 .  (a) Experimental image processing arrangement for determining sphere position .  (b) Sample

 image of analyzed video frame ,  showing determination of sphere position .

 where the tension coef ficient is given by

 C T  5
 T

 0 ? 5 r U 2 ( π D 2 / 4)
 5 F C 2

 D  1
 16
 9

 (1  2  M *) 2

 Fr 4  G 1/2

 ,  (4)

 and  C a  5  added mass coef ficient  5  0 ? 5 ,   L *  5  tether length / diameter  5  L / D ,  Fr  5
 Froude number  5  U  / 4 gD .
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 We can estimate the relative magnitude of the two terms in the tension coef ficient .  In
 both the laboratory and in the ocean ,  we take a typical mass ratio ,   M *  5  0 ? 5 .  In the
 ocean ,  we take a typical spherical buoyant object as around 2  m diameter ,  in a current
 of ,  say ,  2  m / s ,  whereas typical values in the laboratory are 0 ? 05  m diameter in a current
 of 0 ? 1  m / s .  These values yield Froude numbers of 0 ? 45 in the ocean versus 0 ? 14 in the
 laboratory .  In the ocean ,  the first term in the tension coef ficient is of the order of 2% of
 the second term ,  whereas in the laboratory ,  the first term is around 0 ? 02% of the
 second term .  We may thus neglect ,  in many cases of interest ,  the  C 2

 D   term in (4) ,  to
 give

 S n  < S  1
 2 π D  1

 Fr 4 L *  –  1  2  M *
 C a  1  M *

 .  (5)

 These simple predictions for the natural frequency of oscillation are of the same
 order as those we observe ,  although ,  as stated earlier ,  precise conclusions regarding
 synchronization of the sphere oscillations with the vortex formation frequency in the
 wake of the sphere require further accurate determination of Strouhal frequencies ,  due
 to the large scatter presently in the literature .  However ,  it is of interest that the above
 equation for the natural frequency applies to both the in-line and transverse
 oscillations ;  the two natural frequencies are the same .  We present ,  in Figure 3 ,  profiles
 of the transverse  Y -oscillations and in-line  X  -oscillations for around Re  5  5100 ,  and
 for the low-mass sphere ( M *  5  0 ? 082) ,  where it is immediately seen that the actual
 sphere fluid-induced vibrations are quite dif ferent .  The in-line vibrations are at
 twice  the frequency of the transverse vibrations .  One might expect this 2  :  1 ratio of
 frequencies based on physical grounds ,  since the conditions af fecting in-line vibrations
 when the sphere is displaced to  1 Y ,  will be just the same as when the sphere is dis-
 placed to  2 Y .  This is similar to the fact that the in-line drag force on a cylinder
 is at twice the frequency of the lift force due to the alternate vortex shedding .  The
 x - y  displacement pattern ,  or phase plot ,  in Figure 3(c) shows a typical characteristic
 pattern .

 As we increase Reynolds number to around Re  5  9200 ,  in Figure 4 ,  we find that the
 sphere oscillations build up to an amplitude of around 0 ? 4 D  in the transverse direction ,
 and around half of this value in the in-line direction ,  and again ,  the in-line vibrations
 are at twice the frequency of the transverse oscillations .  The phase between the  X  and
 Y  motions changes ,  as Re is increased to Re  5  9200 as shown in Figure 4(c) .  For
 further increases in Re to around Re  5  11  300 ,  in Figure 5 ,  the transverse oscillations
 build up to 0 ? 6 D ,  whereas the in-line vibrations have reached a saturation amplitude of
 around 0 ? 2 D .  The phase plot is further changing to become a ‘‘figure-of-eight’’ shape .
 The vibration spectra of Figure 6 show clearly that the in-line oscillations are at  twice
 the frequency of the transverse oscillations .  A full understanding of this 2  :  1 frequency
 ratio ,  as well as an understanding of the fluid forcing causing the large oscillation
 amplitudes and phase plots requires an investigation into the wake vortex dynamics ,
 which project we shall soon embark upon .  However ,  it is important in a practical sense ,
 that we have discovered that a tethered sphere will vibrate ,  and indeed in a vigorous
 manner ,  and further that the frequency of the in-line oscillations is twice that frequency
 for transverse vibration ,  contrary to predictions .  Both of these phenomena will be
 found to be highly significant to the drag and tether angle ,  which are rather basic
 parameters for such a tethered system .

 From the preceding paragraph it is seen that the response amplitude is a function of
 the flow velocity .  We prefer initially to use the Reynolds number to characterize the
 flow velocity as it is not known ,  ahead of time ,  that the flow field is necessarily
 independent of Reynolds number in the Reynolds number range of our experiments .
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 Figure 3 .  Time traces of (a) transverse (  y ) oscillations ,  (b) streamwise ( x ) oscillations of the tethered
 sphere ,  and (c) the  x - y  phase plot of the oscillations .  Reynolds number Re  5  5132 ,  the mass ratio  M *  5  0 ? 082

 and the normalized tether length  L *  5  9 ? 3 .

 This is apparent from the several measurements in the literature for Strouhal number
 (for a fixed sphere) versus Reynolds number ,  shown in Figure 7 ,  where there is some
 distinct variation over the range of Reynolds number used here .  However ,  we shall
 later demonstrate a reasonable collapse of response data when plotting versus the
 (classical) reduced velocity parameter ,   V R  5  U  / f n D .

 Response amplitudes for the low- M * sphere ,  over a wide range of Reynolds number ,
 Re ,  are given in Figure 8(a) .  Over the whole range of Re (up to 13  000) ,  the amplitude
 of transverse oscillation appears to be increasing .  On the other hand ,  over the same
 range of Re in Figure 8(b) ,  a high- M * sphere ( M *  5  8 ? 93) indicates similarly that there
 is a gradual increase of vibration amplitude ,  but it appears to reach a saturation
 amplitude at Re  5  5000 ,  and to continue at the same level of about two diameters
 peak-to-peak up to the highest Re investigated .  The responses of the two systems
 seem to be quite dif ferent .  The saturation in-line oscillation amplitude reaches a value
 of around 0 ? 2 D  for the low-mass sphere ,  and a value of 0 ? 1 D  for the high-mass sphere .
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 Figure 4 .  Time traces of (a) transverse (  y ) oscillations ,  (b) streamwise ( x ) oscillations of the tethered
 sphere and (c) the  x - y  phase plot of the oscillations .  Reynolds number Re  5  9176 ,  the mass ratio  M *  5  0 ? 082

 and the normalized tether length  L *  5  9 ? 3 .

 We have also investigated the ef fect of changing the tether length  L * .  The value of
 L *   for the preceding cases is around 9 ,  and for the high-mass sphere ,  we also studied
 the case of  L *  5  3 ? 8 [see Figure 8(c)] .  It is of great interest that this does not appear to
 af fect either the saturation amplitudes in the transverse or in-line directions! The major
 dif ference is a shift of the Reynolds number where the oscillating system reaches its
 maximum amplitude ,  in this case saturating at Re around 8000 .  The similarities in the
 increasing segments of the response plots ,  for all three cases above ,  suggests that
 similar phenomena may be occurring for the three cases ,  but at shifted Re values ,  and
 perhaps there exists a more suitable parameter with which to scale the data .  We
 investigate this point below .

 Dimensional analysis shows that ,  if the response amplitude depends on the following
 variables :

 A / D  5  h  f n  ,  M ,  r  ,  U ,  L ,  g ,  m  j ,  (6)
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 Figure 5 .  Time traces of (a) transverse (  y ) oscillations ,  (b) streamwise ( x ) oscillations of the tethered
 sphere and (c) the  x - y  phase plot of the oscillations .  Reynolds number Re  5  11  310 ,  the mass ratio

 M *  5  0 ? 082   and the normalized tether length  L *  5  9 ? 3 .

 where  r   and  m   are the fluid density and viscosity ,  then one may deduce the following
 nondimensional groups ;

 A / D  5  function h M * , V R  , L * ,  Fr ,  Re j ,  (7)

 where  V R  5  reduced velocity  5  U  / f n D .  One could suggest that the parameters
 h M * ,  L * ,  Fr j  serve to change the particular value of the natural frequency that most
 directly influences the response shape (but perhaps not necessarily the saturation
 amplitude) .  Let us now make the assumption that the fluid forcing is essentially
 independent of Reynolds number ,  since the ef fects of viscosity are mainly to set the
 boundary layer thickness at separation ,  with essentially inviscid vorticity dynamics
 thereafter in the near wake ,  then one has the simpler relation :

 A / D  5  function h V R j .  (8)

 In essence ,  we make the assumption that ,  although Reynolds number has some ef fect
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 Figure 6 .  Spectra of streamwise ( x ) and transverse (  y ) oscillations of the tethered sphere ,  showing clearly
 that the streamwise oscillation frequency is twice the transverse oscillation frequency .  Reynolds number

 Re  5  11  310 ,  the mass ratio  M *  5  0 ? 082 and the normalized tether length  L *  5  9 ? 3 .

 on vortex formation for a  fixed sphere  over the relevant Reynolds number range ,  the
 case of an  oscillating sphere  could nevertheless be independent of Reynolds number .
 This assumption ,  which is by no means an obvious point ,  can be checked by the results
 we now present .  If we replot the three sets of response data from Figures 8(a – c)
 in a single plot shown in Figure 9 ,  we find an excellent collapse of the normalized
 amplitude with this single shown in Figure 9 ,  we find an excellent collapse of the
 normalized amplitude with this single parameter ,  the reduced velocity  V R  5  U  / f n D ,  and
 is reasonably independent of the mass ratio  M * or tether length ratio  L * ,  except insofar
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 Figure 7 .  Variation of Strouhal number ( S ) versus Reynolds number (Re) ,  for flow past a rigidly held
 sphere ,  from previous measurements .
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 Figure 8 .  Normalized oscillation amplitude ( A / D ) versus Reynolds number (Re) for (a) low mass ratio
 case ( M *  5  0 ? 082) and  L *  5  9 ? 3 ,  (b) high mass ratio case ( M *  5  0 ? 73) and  L *  5  8 ? 9 ,  (c) high mass ratio case

 ( M *  5  0 ? 73)   and  L *  5  3 ? 8 .

 as these groups influence the value of  f n .  This would appear to be a useful practical
 result for tethered ocean engineering structures .

 Mention must also be made of the small (first) local maximum in response amplitude
 which seems to appear in all amplitude plots of Figure 8(a – c) ,  when the amplitude data
 is increasing .  In the collapsed data plot of Figure 9 ,  we can see that this maximum is
 around  U  / f n D  5  5 to 6 ,  and this corresponds roughly to the inverse of the Strouhal
 number of a fixed-sphere vortex shedding (see Figure 7) .  Under these conditions ,  the
 natural frequency is approximately equal to the vortex formation frequency ,  and it is
 this condition that yields a resonance in classical studies of flow-induced vibration for
 cylinders .  It is clear that the sphere response ,  although exhibiting some maximum for
 this resonance condition ,  has a shape for the larger broad saturation amplitude (at
 higher  V R ) which is quite distinct from the well known cylinder-oscillation problem .

 The existence of large vibrations of a tethered structure causes a significant
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 amplification in the drag coef ficient of the order of 100% over the values measured
 originally by Weiselsberger (1922) and plotted in Schlichting (1979) ,  as demonstrated in
 Figure 10(a) .  The mean drag may be related to the mean angle of inclination of the
 tethered sphere by considering the tension of the tether and the buoyancy force ,  as
 follows :

 tan  θ  5  ( 3 – 4 )
 Fr 2 C D

 1  2  M *
 .  (9)

 Correspondingly ,  the transverse oscillations also cause roughly a 100% increase in the
 angle of inclination  θ   of such a tethered body in a current ,  over the values predicted
 using nonoscillating drag coef ficients ,  as shown in Figure 10(b) .

 4 .  CONCLUDING REMARKS

 It appears quite surprising that almost no studies have been directed towards the
 dynamics of tethered spheres in a steady fluid flow ,  and that it was previously unknown
 whether such a system would tend to oscillate or not .  It is also common ocean
 engineering practice to assume no oscillation ef fects in predictions of drag and tether
 angle of a tethered body .  The present work demonstrates that a tethered sphere will
 oscillate remarkably vigorously at a saturation amplitude of close to two diameters
 peak-to-peak .  The oscillations induce an increase in drag and tether angle of around
 100% over what is predicted using nonoscillating drag measurements .  Analysis of
 in-line and transverse natural frequencies indicate that these frequencies should have
 the same value .  Our experiments show that the in-line oscillations become phase
 locked with the transverse oscillations and vibrate at  twice  the frequency of the
 transverse motion .  The above results suggest that oscillations are highly significant to
 predictions of sphere response in a steady flow ,  and should not be neglected .

 Although we have discovered large oscillations in a tethered sphere system and the
 corresponding magnification of the fluid loading on the system ,  which have immediate
 practical application ,  further research on this problem is necessary .  We must
 understand the relation of the fluid-induced vibration frequency to the natural
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 Figure 10 .  Amplification of (a) drag and (b) tether angle due to sphere oscillations .   M *  5  0 ? 082 , L *  5  9 ? 3 .

 frequency and to the vortex formation frequency .  Although one can compute the
 natural frequency using the simple equations derived in this paper ,  we can see that
 there is a large scatter amongst the measurements of vortex formation frequency in the
 wake of a sphere ,  as demonstrated by Figure 7 .  We are therefore embarking on a
 measurement of Strouhal frequency for a fixed sphere to make precise conclusions
 regarding the synchronization between natural and vortex-shedding frequencies .  It is
 also clear that an understanding of the wake vortex dynamics is needed ,  which will also
 aid in interpreting the response phenomena ,  and we intend to conduct flow visualiza-
 tion as well as Digital Particle Image Velocimetry (DPIV) on this problem .
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